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Abstract. Computer simulations have been employed in recent years to evaluate the
configurational entropy changes in model glass-forming liquids. We consider two methods,
both of which involve the calculation of the ‘intra-basin’ entropy as a means for obtaining the
configurational entropy. The first method involves the evaluation of the intra-basin entropy from
the vibrational frequencies of inherent structures, by making a harmonic approximation to the local
potential energy topography. The second method employs simulations that confine the liquid within
a localized region of configuration space by the imposition of constraints; apart from the choice
of the constraints, no further assumptions are made. We compare the configurational entropies
estimated for a model liquid (binary mixture of particles interacting via the Lennard-Jones potential)
for a range of temperatures, at fixed density.

1. Introduction

Whether a thermodynamic phase transition underlies the transformation of a supercooled liquid
into an amorphous solid, or glass, at the laboratory glass transition temperature Tg is among
the central questions addressed by numerous researchers studying the supercooled liquid and
glassy states. The notion of configurational entropy [1, 2] has played a significant role in
attempts to define and understand the thermodynamic nature of the glass transition. In recent
times, there have been various attempts to determine the configurational entropy of realistic
liquids analytically and by computer simulations [3–6, 8–17]. The purpose of this paper is
to compare two such methods that have been studied recently, namely the evaluation of the
configurational entropy via the analysis of local potential energy minima or inherent structures
(IS) [7–11,16,17], and by the calculation of basin free energies by confining the liquid within a
localized region of configuration space by the imposition of constraints [6]. These approaches,
and results from their implementation, are described in the following sections.

The model liquid studied is a binary mixture of 204 type-A and 52 type-B particles, inter-
acting via the Lennard-Jones (LJ) potential, with parameters εAB/εAA = 1.5, εBB/εAA = 0.5,
σAB/σAA = 0.8, and σBB/σAA = 0.88, and mB/mA = 1, which has been extensively studied
as a model glass former [8, 11, 17–19]. The results presented in section 2 are from molecular
dynamics simulations, at a reduced density ρ = 1.2, which have been described in detail
elsewhere [17, 19]. Since the density is fixed, the dependence on density is not always shown
explicitly in the following.
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2. Configurational entropy derived from inherent structures

In the inherent-structure approach [7], one considers the division of configurational space into
basins of local potential energy minima. In practice such basins may be defined as the set
of all points in configurational space that map to the given local minimum under a specified
local energy minimization procedure. Quite generally, one may then write the total partition
function of the system as a sum of restricted partition function integrals over individual basins.
Rewriting the partition function in this way introduces an entropy term associated with the
number of local potential energy minima. With the expectation that configurations within a
given basin are accessible to each other by thermal agitation while those belonging to distinct
minima may not be, the number of distinct potential energy minima can be seen to be a measure
of the number of physically distinct configurations or structures that the system can adopt, i.e. a
measure of the configurational entropy.

Thus, the canonical partition function is rewritten as a sum over all local potential energy
minima, which introduces a distribution function for the number of minima at a given energy:

QN(ρ, T ) = �−3N 1

NA!NB!

∫
drN exp(−β�)

=
∑
α

exp(−β�α)�
−3N

∫
Vα

drN exp(−β(� − �α))

=
∫

d�α �(�α) exp(−β(�α + Nfbasin(�α, T )))

=
∫

d�α exp(−β(�α + Nfbasin(�α, T ) − T Sc(�α))) (1)

where � is the total potential energy of the system, α indexes individual inherent structures,
�α is the potential energy at the minimum, Vα is the basin of inherent structure α, �(�α)

is the number density of inherent structures with energy �α , and the configurational entropy
Sc ≡ kB ln� (note that here Sc is a function of energy; the equilibrium average of this quantity
is displayed in figure 4, later, as a function of temperature).

The probability of finding the system in the basin of an inherent structure of a given energy
is given by the above as

P(�α, T ) = 1

QN(ρ, T )
exp(−β(�α + Nfbasin(�α, T ) − T Sc(�α))). (2)

The probability distribution P can be obtained from computer simulations, and offers a
means of obtaining Sc, provided that one can estimate QN (or equivalently the free energy
A(ρ, T ) of the system) and the basin free energy fbasin(�α, T ).

The free energy at any desired temperature is obtained from thermodynamic integration
of pressure and potential energy data from MD simulations [6, 8]. The absolute free energy
A(ρ, T ) of the system at density ρ at a reference temperature Tr = 3.0 is first defined in
terms of the ideal-gas contribution Aid(ρ, T ) and the excess free energy Aex(ρ, T ) obtained
by integrating the pressure from simulations:

A(ρ, T ) = Aid(ρ, T ) + Aex(ρ, T ) (3)

βAid(ρ, T ) = N(3 ln� + ln ρ − 1)

βrAex(ρ, Tr) = βrA
0
ex(0, Tr) + N

∫ ρ

0

dρ ′

ρ ′

(
βrP

ρ ′ − 1

)

βrA
0
ex(0, Tr) = − ln

N !

NA!NB!
.
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Here, N is the number of particles, β ≡ kBT , � is the de Broglie wavelength, and A0
ex arises

from the mixing entropy. Aex at a desired temperature may be evaluated by integrating the
potential energy, E:

βAex(ρ, β) = βAex(ρ, βr) +
∫ β

βr

E(ρ, β ′) dβ ′. (4)

As observed in [8, 11], the T -dependence of E at the density studied is well described by
the form E(ρ, T ) ∼ T 3/5, in agreement with predictions for dense liquids [20]. A fit of the
potential energy data to this form affords a means of extending with confidence the temperature
dependence of E to T -values where direct MD data are unavailable.

The basin free energy fbasin(�α, T ) is obtained by a restricted partition function sum over
a given inherent-structure basin, Vα . For sufficiently low temperatures, one may expect the
basin to be harmonic to a good approximation. In the harmonic approximation, we have

βfbasin = 3

2
ln

(
β

2π

)
+

1

2N

3N−3∑
i

ln λi ≡ βftherm + βfvib (5)

where λi are eigenvalues of the Hessian or curvature matrix at the minimum. For individual
minima, these eigenvalues are obtained by numerical diagonalization of the Hessian. The
basin free energy can then be obtained either as a function of the inherent-structure energy
(by averaging free energies within individual energy bins) or as a function of temperature,
by averaging all inherent structures sampled at a given temperature. βfvib is a slowly
varying function of temperature (the temperature dependence is obtained by averaging over
1000, 100 inherent structures at T < 1, T > 1 respectively), and is fitted to the form
βfvib(T ) = f0 + f1/T

2 which fits the available data quite well.
If the harmonic approximation to the basin free energy is accurate, inversion of equation

(2), expressing Sc(�α) in terms of P(�α, T ), QN(ρ, T ) (or A(ρ, T )) and fbasin(�α, T ), for
different temperatures T , should result in curves that overlap with each other, as Sc(�α) is
independent of T . Figure 1 shows the result of such inversion, which indicates that below
T = 0.8, the various Sc-curves do overlap, while they do not at higher T . The procedure
applied here is similar to, but improves upon, the procedure of shifting unnormalized Sc-curves
adopted in [8, 10]. Thus, figure 1 indicates that a harmonic approximation to the basin free
energy is not valid for temperatures higher than T = 0.8. The temperature dependence of the
average inherent-structure energyEIS , shown in figure 2, is consistent with this conclusion. As
discussed in [10], a simple expectation for the T -dependence of the average inherent-structure
energy in the harmonic regime is that EIS ∼ 1/T . Figure 2 shows that such a T -dependence is
indeed valid at low temperatures, but breaks down forT > 0.8. However, this observation must
be viewed in conjunction with two other observations about the topography of the inherent-
structure basins:

(i) it has been demonstrated recently [21] that the separation between ‘vibrational’ and
‘inter-basin’ relaxation becomes reasonable for temperatures close to and below the mode
coupling Tc (∼0.45 for the model liquid studied here);

(ii) the difference between the potential energy of instantaneous configurations and the
corresponding inherent structures is nearly linear with a slope of 3/2 for temperatures
as high as T = 1.5, as shown in figure 3. Such a linear temperature dependence would
normally be associated with harmonic behaviour, which in the present case is misleading.

The total entropy of the liquidS as well as the basin entropySbasin are evaluated as functions
of density and temperature from the total and basin free energies. The configurational entropy
Sc(ρ, T ) and the ideal glass transition TIG(ρ) are then given by

Sc(ρ, T ) = S(ρ, T ) − Sbasin(ρ, T ) Sc(ρ, TIG(ρ)) = 0. (6)



6518 S Sastry

−7.05 −6.95 −6.85
Inherent Structure Energy/N

0.4

0.5

0.6

0.7

0.8

0.9
C

o
n

fi
g

u
ra

ti
o

n
al

 E
n

tr
o

p
y,

 S
c/

N
k B

T = 2.00
T = 1.50
T = 1.00
T = 0.797
T = 0.629
T = 0.599
T = 0.569
T = 0.542
T = 0.484
T = 0.467

Figure 1. Configurational entropy as a function of inherent-structure energy per particle, obtained
for a range of temperatures. The overlap of curves for T < 0.8 indicates that the harmonic
approximation to the basin free energy is reasonable for T < 0.8. The solid line is a quadratic fit.

Figure 4 shows the configurational entropy so obtained as a function of T . By extrap-
olation, based on the assumption that the potential energy varied with temperature as T 3/5,
the ideal glass transition is found to occur at T = 0.2976, in good agreement with estimates
in [8, 11].

3. Constrained-system simulations

An alternative approach to defining the basin entropy, which has been explored by Speedy [6],
is to impose constraints on a liquid to trap it in one of the basins that it samples in equilibrium. A
related approach has also been studied in [14]. With suitably chosen constraints, the calculated
properties of the constrained system allow the evaluation of the basin entropy. A reasonable
choice of constraint will restrict the system to a physically meaningful set of configurations
related to each other without the need for configurational rearrangement. Further, such a
constrained system should behave reversibly. In this work, the usefulness of one simple
constraint is explored, by calculating the configurational entropy for a set of six temperatures
at a fixed density of 1.2, and compared with corresponding results from the inherent-structure
calculations described above. It is found that the constrained simulations result in comparable
numbers for the configurational entropy from the inherent-structure results.
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Figure 2. Average inherent-structure energy versus inverse temperature, showing that at low
temperatures, the temperature dependence is well described by T −1, while above T = 0.8, this
dependence is not valid.
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Figure 3. The temperature dependence of the difference between the potential energy of the liquid
configurations and their corresponding inherent structures, which is linear with a slope of 3/2 up
to very high temperatures.
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Figure 4. Configurational entropy versus temperature, obtained from (a) inherent structures
(solid line), (b) constrained simulations, where the constraint is applied to equilibrated liquid
configurations (filled circles, labelled ‘Constrained Simulations 1’), and (c) constrained simul-
ations, where the constraint is applied to inherent structures (filled squares, labelled ‘Constrained
Simulations 2’). The inset shows the extrapolation of Sc which vanishes at T = 0.2976.

Ten sample configurations are chosen at each temperature, and the Voronoi tessellation
is performed for each configuration. The Voronoi cell of each given particle, and the
corresponding geometric neighbours, correspond to the cage that a particle experiences at short
and intermediate timescales. A configurational rearrangement of particles in the system will
result in a restructuring of the Voronoi tessellation as well. Thus, the constraint of restricting
particles to their Voronoi cells is an a priori reasonable choice. Hence, a constraint is imposed
which confines each particle to its Voronoi cell during the Monte Carlo simulation from
which the properties of this constrained system are evaluated. Each Monte Carlo simulation
mentioned below is performed for 25 000 Monte Carlo steps. The constrained system can be
studied at any desired temperature; the temperature of the simulation from which the reference
configurations are taken will be referred to as the fictive temperature where there is need
to distinguish these two temperatures. In order to estimate the configurational entropy, we
must evaluate the free energy of the constrained system. This is done by thermodynamic
integration [22, 23] from a reference system where each particle experiences a harmonic
potential around the initial configuration (Einstein crystal). Considering a potential energy
function of the form

�(λ, rN) = (1 − λ2)(�LJ (r
N) + �c) + λ2C

∑
i

(ri − r0
i )

2 (7)

where λ is a tuning parameter that varies between 0 and 1, �LJ is the Lennard-Jones potential
of the unconstrained system, �c is the constraining potential (which is zero if the constraint is
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obeyed and infinity if it is not), the corresponding free energy is given by

A(λ, ρ, T ) = −kBT log

[
�−3N

∫
drN exp(−β�(λ, rN))

]
. (8)

The required free energy, A(λ = 0, ρ, T ), is related to that of the Einstein crystal (which may
be calculated straightforwardly) by

A(λ = 0, ρ, T ) = A(λ = 1, ρ, T ) −
∫ 1

0

∂A

∂λ
dλ (9)

where, from differentiating equation (8) with respect to λ,

∂A

∂λ
= −2λ

〈
�LJ − C

∑
i

(ri − r0
i )

2

〉
. (10)

The required average in the above equation is calculated by performing Monte Carlo
simulations for a set of 11 λ-values. The values of ∂A/∂λ obtained are shown in figure 5. The
free energy for λ = 1 is

A(λ = 1, ρ, T ) = 3NkBT

[
log� − 1

2
log

(
π

βC

)]
. (11)

All the above calculations are also performed using the inherent structures corresponding to
the equilibrated liquid configurations mentioned above. With the free energy of the liquid
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Figure 5. Values of ∂A/∂λ for temperatures as marked. The filled symbols represent values for
systems constrained with respect to the corresponding inherent structures.
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evaluated as described in the previous section and the free energy of the constrained system
obtained as described here, the configurational entropy of the system is given by

Sc/kB = Acs

NkBT
− A

NkBT
(12)

where Acs is the free energy of the constrained system. The resulting configurational
entropies are shown in figure 4. The Sc-values from the constrained-system simulations are
comparable with the inherent-structure results, but the agreement is moderate. In particular,
the constrained-system results vary more weakly with temperature.

To verify that the chosen constraint is a reasonable one, the free energies of the constrained
system (for configurations from equilibrium runs at (fictive) temperatures Tf = 0.629, 0.484)
are obtained independently at T = 0.1 and T = 1.2 from thermodynamic integration with
respect to the Einstein crystal. Simulations are also performed for temperatures in between
these two values, from which the temperature dependence of the potential energy is obtained.
Using equation (4), A(T = 0.1)/NkBT is calculated by integrating from T = 1.2. The
difference of the directly calculated value and the one obtained by integration is found to be
−0.0197 for Tf = 0.484 and 0.0247 for Tf = 0.629. In other words, the constrained system
appears to be reversible within the margin of error represented by these numbers. However,
the discrepancy in the Sc-values between the constrained-system and the inherent-structure
estimates is of the same order. Indeed, the discrepancy in the Sc-values for T = 0.484 and
T = 0.629 is roughly the same as the discrepancy in the free energies above. It is likely that
the sample of ten configurations used here is too small to give more accurate values.

4. Conclusions

The configurational entropy is obtained for a binary mixture liquid from analysis of inherent
structures, and from estimation of the basin free energy via constrained-system simulations.
While the harmonic approximation used in the inherent-structure approach to evaluate the basin
free energy is in general questionable, the difficulty in the constrained-system approach is the
proper choice of constraint. The values for the configurational entropy obtained from the two
methods show reasonable agreement. Further tests for the accuracy of the constrained-system
results, and, more importantly, exploration of improved constraining methods are desirable for
making a more stringent comparison of these two methods of calculating the configurational
entropy.
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[21] Schröder T B, Sastry S, Dyre J and Glotzer S C 2000 J. Chem. Phys. 112 at press
[22] Speedy R 1999 Private communication
[23] Frenkel D and Ladd A J C 1984 J. Chem. Phys. 81 3188


